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1. Introduction

This project entitled: 'The structure of high-Reynolds-number turbulent boundary layer'

was a collaborative effort between Yale (PI: K.R. Sreenivasan), Princeton (PI: A.J. Smits) and

Penn. State (PI: J. Brasseur). The main point of the proposal was that the structure of the high-

Reynolds-number turbulent boundary layer may differ substantially from that at moderate

Reynolds numbers, and is therefore worth a special look.

The emphasis in this project - which involved experiment, simulations and data analysis -

was to be on aspects such as: (a) in what respects does the boundary layer at high Reynolds

numbers differ from that at low Reynolds numbers? (b) What mechanisms in particular contribute

to turbulent transport of heat, mass and momentum in the logarithmic region? (c) What sets the

scales for transport in the boundary layer? (d) Is the transport primarily in the form of some small

number of very active events occupying small amounts of time (and space), or does it occur over

most of the time (and occupy most of the space) in a fashion that is not spectacular? (e) How can

the transport phenomenon be modelled for use in sub-grid scale models? (f) What analogies from

other branches of physical sciences can be brought to bear on the transport issue? Although

questions concerning energy dissipation, velocity increments, zero-crossings, fractal dimensions,

were to be addressed, the central part of the work was to be on turbulent transport. Progress made

at Yale on these and related questions will be described here briefly.

2. Notes on the Yale work

(a) Data were acquired in the laboratory as well as atmospheric boundary layer.

Atmospheric data were obtained at a few selected heights above a wheat-field canopy. They were

primarily in the form of 'single point' measurements. The quantities measured were velocity

components (two), the Reynolds shear stress, vorticity (streamwise component) and temperature.

'Flow visualization' was done by using smoke bombs (generally lasting for about three minutes) at

several heights. Laboratory data were comparable. -- ',.;' ---"

DrIC QUMar INSPECTED 3 / /
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(b) The multiplier method was develeoped for displaying scale-similarity in the momentum

transport process at high Reynolds numbers; new schemes for the fractal analysis of turbulent

velocity and temperature data in the atmospheric surface layer were also developed and used.

(c) The issue of incomplete similarity (Barenblatt, J. Fluid Mech. 248, 513, 1993) was

examined in so far it bears on the mean velocity distribution in high-Reynolds-number pipe flows

and boundary layers.

(d) The Reynolds number effects on the inner-outer interactions were investigated,

especially on the Reynolds shear stress.

(e) Several statistical properties were examined over a wide range of Reynolds numbers;

these included the probability density function (pdf) of the zero-crossing intervals in turbulent

signals, and the pdf of velocity increments.

(f) The scalar field as well as velocity data were mapped out in two-dimensional planes (the

latter using PIV techniques) in a moderate-Reynolds-number boundary layer. The reason for the

moderate-Reynolds-number measurements is that it can be probed in much greater detail than is

possible (for technical reasons) at high Reynolds numbers, and that the data so obtained may serve

as a basis for comparison with the high-Reynolds-number data. It would similarly serve well for

the examination of the Reynolds number effects.

3. Some further details

(a) Investigation of the skin friction data in pipes and boundary layers indicated that there

might be a reasonably well-defined 'transition' between the low Reynolds number behavior and the

high Reynolds number behavior. Velocity profiles as well as pressure fluctuations seemed to

support the notion that a weak, or second-order, transition may indeed occur at a fairly high

Reynolds number. This Reynolds number for the boundary layer is of the order of 6000 in terms

of the momentum thickness, or for the pipe of the order of about 105 in terms of the pipe diameter.

The following physical effects were considered as possible causes for this 'transition', and their

relative effects were investigated.
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(i) It is possible that these effects could arise because the importance of the viscous-

influenced interface in the outer region could become weak beyond some Reynolds number.

Fractal estimates and zero-crossing measurements precluded such a possibility.

(ii) It is possible that the localization of the energy dissipation in the outer region may be the

cause. But multifractal estimates show that this is an unlikely because the localization is extremely

slow in Reynolds number.

(iii) It is possible that these effects could come from the altered circumstances of the

inner/outer interaction. It was first shown by an analysis of rough-pipe data that the really

important parameter is not the Reynolds number but the ratio of the inner scale to the outer scale.

This ratio is the same as the Reynolds number in the smooth-wall flows, but it can be prescribed

independent of the Reynolds number for flows with rough walls. Thus, the so-called Reynolds

number effects are really the effects of the outer/inner scale ratio. This also suggests that a study of

the high-Reynolds-number dynamics is not ideally studied in the atmospheric boundary layer over

rough terrain where, even though the Reynolds number is la-ge, the effective scale ratio is not so

large.

(b) It is shown that for large values of the outer/inner scale ratio, as opposed to the case of

moderate values of this ratio, the velocity-conditioned Reynolds shear stress changes its character.

(c) It is shown that multiplicative representations of the Reynolds stress, in spite of some

advantages of interpretation, has several problems in the logarithmic region of the boundary layer.

In any case, scale-similar ranges for the multiplier distribution of the Reynolds shear stress have

been identified.

(d) It is shown by investigating the instantaneous momentum fluxes that, on the average,

the contributions to the Reynolds stress comes from medium amplitude velocity fluctuations of the

order of 1.5 root-mean-square value. Thus very large velocity amplitudes do not contribute much

to the Reynolds stress.
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4. Publications

Most of this work can be found in the following references:

(a) P. Kailasnath, K.R. Sreenivasan and G. Stolovitzky, "Probability density of velocity

increments in turbulent flows", Phys. Rev. Lett. 68, 2766, 1992

(b) A.B. Chhabra and K.R. Sreenivasan, "Scale-invariant multiplier distributions in

turbulence", Phys. Rev. Lett. 68, 2762, 1992

(c) K.R. Sreenivasan and A. Juneja, "Fractal dimensions of time series in turbulent flows",

submitted to J. Fluid Mech., 1992

(d) P. Kailasnath and K.R. Sreenivasan, "Zero-crossings of velocity fluctuations in

turbulent boundary layers", submitted to Phys. Fluids A., 1992

(e) P. Kailasnath, "Studies of Reynolds number effects in turbulent boundary layers",

Ph.D. thesis, Yale University, June 1993

The papers (a) and (b) are enclosed. Items (c), (d) and (e) are in the process of being

published and, once published, copies will be sent to AFOSR. Most of the material central to the

proposal is contained in item (e).

5. Collaboration with Princeton and Penn. State
1

The collaborative aspect of the work proposed between Yale, Penn. State and Princeton.

This collaboration is still continuing (even though the project has formally ended), and it is

expected that a few significant publications will arise from it. The collaboration has taken the form

of exchange of data, mutual visits and coordination of flow conditions between simultaions and

experiments. In terms of concrete results, we may cite the following aspects:

(a) Comparison of the inertial region of a high-Reynolds-number turbulent boundary layer

with homogeneous shear flow;

(b) Wavelet analysis of the experimental as well as numerically generated data in boundary

layers;



(c) Comparison between the simulations and experiments in moderate-Reynolds-number

boundary layers.

A draft of a paper on item (a) is available, and (a) as well as (b) have been presented at

APS/DFD meetings, as well as elsewhere. It will be several more months before journal

publications materialize.

6. Aspects of the work that were not successful

(a) We had proposed to make measurements in high-Reynolds-number boundary layer in

the new wind-tunnel facility that was to have been completed at Illinois Institute of Technology

about two or three years ago. Unfortunately, this was not possible because the wind tunnel is still

unfinished as of this writing. So we made progress on all other fronts available to us: acquisition

and analysis of data in the high-Reynolds-number atmospheric surface layer (already mentioned),

examination of the high-Reynolds-number mean velocity data acquired at APL of Penn. State, use

of some relatively high-Reynolds-number data acquired at Princeton, and a study of the moderate

Reynolds number data acquired by us. To supplement the analysis, we also examined all previous

data obtained elsewhere, in both boundary layers and pipe flows.

(b) We had planned on obtaining the scalar and velocity fields simultaneously at moderate

Reynolds numbers, but did not have the time to complete these measurements before the project

came to an end, and the post-doctoral fellow working on the problem had to be terminated.

Unfortunately, much time and effort was invested in this work. The consolation is that the

expertise acquired will be of use in subsequent work.

7. Personnel

Besides the PI, much of the work on this project was done by a post-doctoral fellow, Dr.

A.K. Suri (who made most of the scalar and PIV measurements in moderate-Reynolds-number

boundary layers), and a graduate student, Mr. P. Kailasnath (who took a large share of the

responsibility for single-point measurements in laboratory as well as atmospheric boundary
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layers). Kailasnath has just completed his Ph.D. thesis and has taken up a position at the Yale

medical School. Off and on, as demanded by circumstances, other people were employed on

short-term basis. Some of the work related to the vorticity measurements in the atmospheric

boundary layer are contained in the Ph.D. dissertation of Mark S. Fan. Mark's thesis was only

partly supported by another grant AFOSR-87-0116. He now works for NASA.

A final note: There are several aspects of this work that are yet to be digested fully, and it

is our responsible belief that more new results will appear out of this work in due course.
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Scale-Invariant Multiplier Distributions in Turbulence

Ashvin B. Chhabra ().( 2 ) and K. R. Sreenivasan t1 •

("Mason Laboratory. Yale University, New Ha'en. Connecticut 06520-2139
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A family or scale-invariant, base-dependent, multiplier distributions is measured for the turbulence
dissipation field in the atmospheric surface layer. The existence of these distributions implies the ex-
istence of the more traditional multifractal scaling functions, and we compute both positive and negative
parts of the f(a) curve. The results support the conjecture of universality in the scaling properties of
small-scale turbulence. A simple cascade model based on the measured multiplier distributions is shown
to possess several advantages over previously considered models.

PACS numbers: 47.25.-c. 02.50.+s. 03.40.Gc, 05.45.+b

The multifractal formalism D1-51 [e.g., the f(a) func- f(q) and a(q) from individual samples. In addition, for
tion] compactly describes the scaling properties of mea- any given q, f(q) and a(q) from different samples are
sures which arise in a variety of problems such as chaotic correlated and fall along a thin band [161.
dynamical systems 161, diffusion-limited aggregation These phenomena are absent in deterministic processes,
(DLA) 171, and dissipationlike quantities in fully devel- and their occurrence reflects an inherently probabilistic
oped turbulence [8]. The f(a) function is a macroscopic dynamics. For such cases, a complete specification of the
feature of such measures, and a quest for deeper under- scaling properties, even at the level of f(a), requires
standing of the underlying physics has led to microscopic measuring both positive and negative parts of f(a)
descriptions. A successful example is the Feigenbaum [12,13,17-201. Negative f(a) for turbulent flows at
scaling function (FSF) [91 appropriate to the onset of moderate Reynolds numbers have already been obtained
chaos in the period-doubling route. Basic to the FSF are in Ref. [201 but, for atmospheric flows, their computation
the contraction ratios (or multipliers), which describe by conventional box-counting methods requires an enor-
how distances between the nearest-neighbor iterates scale mous amount of data, involving perhaps several years of
with increasing levels of refinement. The FSF organizes data acquisition (12,13,201. Recently (12,13,211, a
these multipliers according to the natural time of the sys-
tem described by the closest return times, and compactly
describes the local scaling. The FSF description is much 1.0 |
richer than that embodied in f(a), and the latter is easily
computable from the former. Further, the f(a) descrip-
tion is degenerate and a variety of scaling functions lead
to the same f(a) function (10,111. 0.8 0

Many multifractai measures, su-,,, as the spatia, dý,stri- 00
bution of the energy dissipation rate in fully developedo

turbulence, or the harmonic measure of the DLA struc- -
tures, display statistical properties that are different from 50.6 0

those of deterministic systems. Two such properties are o6
the sample-to-sample fluctuations of the f(a) function,
and the existence of negative dimensions-both of which
represent the same underlying phenomenon 112,13). Re- 0.4
call that, if PA(O) is the measure in the ith box of size , 0
one can decompose the multifractal measure into in-
terwoven sets of varying singularity strengths a (where
[Pj(01 )jq-q), whose fractal dimensions f(a) are de- 0.2 O 0 0_ ,I0.A 0.6 0.8 1.0

fined by N(a)W -- f(), N(a) being the number of singu- at(q)
larities of strength a. Figure I shows how f(q -2) and FIG. I. Sample-to-sample fluctuations of f(q -2) vs
a(q -2), computed from the turbulence dissipation data a(q-2) for ten samples (7200 points each, roughly equivalent
using the direct method of Ref. [141, vary from one sam- to an integral scale) from an atmospheric boundary layer
pie to another, each sample is approximately one macro- (squares). The circles are from a simulation of a binary cas-
scale in extent and produces extended and unambiguous cade model with multipliers chosen randomly from a triangular
scaling. The sample-to-sample fluctuations 1151 are distribution. This model is described later in the text (see also
much larger than the least-squares errors in calculating Fig. 2).

2762 0 1992 The American Physical Society
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method based on scale-invariant multiplier distributions
has been proposed as being exponentially faster and more
accurate than box-counting methods. Utilizing this
method, we were able to compute negative dimensions for
atmospheric flows as well as a variety of model cascade _

processes.
This paper has several related objectives. As a con- 0o

tinuation of the notion that scale-invariant multiplier dis- 2  /-

tributions are fundamental functions, we compute them 1
for atmospheric turbulence by assuming that the observed
scaling could result from cascades of any base (binary,
ternary, etc.). Using these distributions, we construct
several base-independent functions such as f(a). We then .
show that the f(a) functions computed from different M
multiplier distributions agree well with each other, as well FIG. 2. Multiplier distributions P.(M.) for hvscs (from
as with those computed in moderate-Reynolds-number right to left) a-2, 3, and 5. The larger symbols show averages
flows by box-counting methods. Finally, we propose a over steps comparing measures in boxes of size m with those in
relatively simple cascade model that reproduces not only size ma. 50 < m < 1000 in units of Ihe Kolmogorov scale. The
the observed positive and negative parts of f(a) and smaller symbo,.. show the distributions obtained for differentvalues of m (50, 80. 150. 200. 400, and 1000). The solid line issample-to-sample fluctuations, but also the stretched cx- aueu prxmto otea- itiuin

ponential tails in the probability distribution of tur-

bulence dissipation. The superiority of the multiplier
method allows us to compute f(a) with greater accuracy function may extend over (-00,08) whereas P.(M.) is a
and to assess, for the first time, the universality conjec- compact function defined on M. E 10, I. The base
ture about scaling properties in the negative-dimension dependency of Po(M.) can be scaled out because the
range. multiplier distributions corresponding to different bases

To compute the scale-invariant multiplier distributions are related by convolution, provided the multipliers at
one first constrti..s a measure which, in the present case, successive cascades are uncorrelated. With this assump-
is the energy dissipation rate represented by the square of tion, several base-independent functions can be construct-
the derivative of a component of the velocity. The mea- ed from the multiplier distributions.
sure is then covered by boxes of uniform size. Each of Consider as an example the Mellin transforms M of
these boxes is then subdivided into a number of boxes, a, Pa(Ma) and of its convolution P.(N), where N is the
and the ratios of the measures in the original box to those product of two multipliers picked according to their prob-
in the smaller sub-boxes are computed. A histogram of abilities P,(M.). Since the Mellin transform of a convo-
these ratios is then Pa(M.). Figure 2 shows P0(M.) ob- lution is the product of the individual Mellin transforms.
tained by assuming cascades of bases a -2, 3, and 5. The we have
larger symbols show an average over steps involving com- M{P1-,(Mb)} -M P.(Mo)l" MIP.(M)l
parisons between boxes of size m and those of size ma,
where m ranged from 50 to 1000. The shape of the dis- -[M IP(Mo)J12. (I)
tribution remains invariant for the inertial range of
scales. (For the smallest scales, the distributions have a It is clear that, in general, the exponent in the last term
concave shape. This concavity is related to the diver- of Eq. (I) is simply log(b)/Iog(a), the number of times
gence of moments [221 and will be discussed elsewhere. the variable is being convolved. So far, for any two
For very large boxes, multiplier distributions become different bases we have
flatter, as would be the case for random measures.) MIP.(M,)] h/Io) -M{Pb(Mb)}] :,,(,1 (2)

The multiplier distributions P.(Ma) are more basic

than the f(a) function, and were introduced in the con- On evaluating the Mellin transform and taking loga-
text of turbulence by Novikov (11, and measured by Van rithms of both sides, we get [I]
Atta and Yeh [231. However, their importance with re- log((Mp)q) log((Mb)) --- r(q)+Do] (3)
gard to multifractals in turbulence has subsequently been
ignored. One can compute from the multiplier distribu- log(a) log(b)
tions both the positive and negative parts of the f(a) The other scaling functions f(q). a(q), and Dq are simply
function, i.e., they contain information on the asymptotic related to r (q), and so they too can be easily derived
scaling properties of a measure and on fluctuations of from the multiplier distributions. Further, one can derive
scaling properties for samples of finite size. In addition, equivalent scdling functions by using Laplace or Fourier
even in instances where high-order moments diverge transforms.
12,22), P.(M.) remains well defined. Finally, the f(a) We now compute the f(a) function from the multiplier

2763
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FIG. 3. The f(a) function from the atmospheric data for FIG. 4. The f(a) function for the atmospheric data for bases

bases 2. 3. 4, 5, 6. 8. and 10, after the base-dependent prcfactor 2 and 10. Also reproduced (from Ref. [201) are the data from
has been removed. The good collapse implies that the assump- a variety of laboratory flow., (larger symbols). The small dia-
tion of random multiplicative processes is essentially correct. monds are from computations [281 using multipliers from the
and that no single base is preferred, triangular distribution shown in Fig. 2. The agreement between

f(a) functions for atmospheric turbulence and for laboratory
flows supports the notion of universality of scaling properties at

distributions of Fig. 2, and verify that the multifractal different Reynolds numbers even of the most rare events.
scaling functions derived from different-base multiplier
distributions indeed collapse. While doing so. it is impor-
tant to account for the existence of a prefactor in parison in the negative f(a) region shows excellent agree-
((M.P)'-C(q)aI- -n From Eq. (3), we have ment between the laboratory and atmospheric scaling
r,(q)+Do-r(q)-log[C(q)]/Iog(a)+Do, but the pre- properties, supporting the conjecture of universal scaling
factor can be eliminated by computing ra(q) for two for even the rate events in the small-scale velocity field in
different bases. One can then obtain the correct base- fully developed turbulence.
dependent exponents for an arbitrary base. Internal con- In the past few years a variety of cascade models such
sistency requires that all of them should collapse onto a as the log-normal model [241, beta model 1251, random
single curve. Figure 3 shows just such a collapse for beta model 1261, and p model [81 have been proposed to
bases a -2. 3, 4, 5, 6, 8, and 10 (where the prefactor was mimic intermittency in turbulence. None of these models
computed using bases 2 and 4). The collapse strongly in- displays sample-to-sample fluctuations or negative dimen-
dicates that there is no preferrtd base as far as it con- sions; nor do they explain the multiplier distributions
cerns the scaling properties. shown in Fig. 2. One can, however, construct an entire

Finally, Fig. 4 compares the scaling exponents for at- family of simple cascade models which display all of the
mospheric flows with those computed (201 from laborato- above features and whose f(a) functions agree well with
ry data. The latter have been computed using conven- experiment. The simplest model would be a binary model
tional box-counting methods and thus do not assume un- with multipliers picked randomly from a triangular distri-
correlated multiplicative processes. The exponents for at- bution (shown by the solid line in Fig. 2) which is a rough
mospheric flows have been computed using the multiplier approximation to the mean distribution for a binary cas-
method which uses just such an assumption. The excel- cade. Figure 4 shows that the f(a) function for this
lent agreement with conventional box counting (in the model is in good agreement with other experimental data.
range where the latter is capable of yielding exponents) As already remarked, this cascade model displays the
indicates the correctness of our convolution arguments right behavior with respect to sample-to-sample fluctua-
based on uncorrelated multiplicative processes. (Such an tions shown by circles in Fig. I. The model also repro-
approach would fail for the period-doubling attractor be- duces the observed 120,271 stretched exponential tails.
cause the contraction ratios in that case are highly corre- P(NOe-xpl- 0(c)' 21, in the probability distributions of
lated, thus invalidating the simple convolution arguments the energy dissipation rate v. However, it cannot address
used here.) We thus observe a nontrivial and interesting issues such as the divergence of high-order moments.
empirical fact that the successive multipliers in cascades, We thank J. Eggers, C. J. Evertsz. R. V. Jensen, P. W.
which give rise to the observed intermittency in tur- Jones, L. P. Kadanoff. B. B. Mandelbrot. C. Meneveau.
bulence. seem to be essentially uncorrelated. The com- M. Nelkin. N. Read, and G. Stolovitzky for useful dis-
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cussions. A.B.C. acknowledges support from ONR and scaling properties of DLA (unpublished joint work with
the Materials Research Laboratory at the University of C. J. Evertsz).
Chicago. K.R.S. acknowledges support from an AFOSR 1161 One may argue that the fluctuations disappear in the lim-
grant. it of infinite levels of refinement. However. even geophys-

ical turbulent flows have no more than about a dozen
steps in the cascade. Solar turbulence has about 30.
Thus one is always dealing with statistical mechanics of
small systems and the thermodynamic limit is strictly nev-
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Probability Density of Velocity Increments in Turbulent Flows
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Measurements have been made of the probability density function (PDF) of velocity increments Au(r)
for a wide range of separation distances r. Stretched exponentials provide good working approximations
to the tails of the PDF. The stretching exponent varies monotonically from 0.5 for r in the dissipation
range to 2 for r in the integral scale range. Theoretical forms based on multifractal notions of tur-
bulence agree well with the measured PDFs. When the largest scales in the velocity u are filtered out,
the PDF of Au(r) becomes symmetric and, for large r, close to exponential.

PACS numbers: 47.25.-c. 02.50.+s. 03.40.Gc. 05.45.+b

Much work in the turbulence literature [1-41 has been constant-temperature mode on a DISA 55M01 anemom-
devoted to the determination of the scaling properties of eter. The anemometer voltage was digitized on a 12-bit
the structure functions ([Au(r)]'), where n is a positive digitizer and linearized before further processing. Veloci-
integer and Au(r) is the velocity increment between two ty derivatives were obtained by central differencing of the
spatial locations which are a distance r apart. It has re- data. Taylor's frozen flow hypothesis was used in inter-
cently 151 been emphasized that a better strategy may be preting time intervals as space intervals. The precise lim-
to focus on the probability density functions (PDF') of itations of this hypothesis are unclear (in spite of much
Au(r), p",(Au), rather than on the collection of mo- work), especially for the tails of the PDF, but it should be
ments. Accordingly, this Letter is concerned with the noted that the mean convection velocity in the present ex-
PDFs of Au(r) and of velocit" derivatives, and has three periments was about 15 times larger than the standard
purposes. First, it provides experimental data on deviation of the fluctuating velocity. For obtaining the
p,(Au(r)) for a large range of separation distances r PDF of the filtered data, a linear phase filter with excel-
spanning the dissipation range on one end and the in- lent cutoff characteristics 1101 was used.
tegral scale range on the other. The data show that the We have fitted stretched exponentials, pa.
PDFs are square-root exponential for r in the dissipation -exp(-aIAujm), to the tails of p&,(Au). The inset to
range and Gaussian for r on the order of the correlation Fig. I demonstrates, for one arbitrarily chosen r, that
(or the integral) scale. Second, it provides for the PDFs
a theoretical expression based on the multifractal picture
for turbulence dynamics. The third aspect is related to 2.0 1 ,
the exact result known for velocity increments 161, name- 0

ly, that in locally homogeneous turbulence, the third- C I.s .a
order structure function in the inertial range obeys the re- - 0 • 0.07
lation o -

([A u W ] 3 - W- .r . ( I) 0o 0 -3o .,

While the implications of the nonzero value of ([Au(r)] 3 ) 0 0.5 2 3 n
have not been understood fully, it has been shown recent- 6.5,* I

ly 171 that the removal of the largest scales by high-pass -. L -2 0 2 4
filtering renders the PDF of Au symmetric. This Letter I og9,r- /A)
provides experimental results on the p&, when the low- FIG. I. The experimentally determined stretching exponent
frequency (or large scale) components of u have been m in p&(Au(r))-exp[-a(Au)m], plotted as a function of
filtered out. For complementary results on PDFs of ve- flA. 0 and D are for two different sets of atmospheric data. The
locity derivatives and increments, see Refs. 181 and 191. Taylor microscale Reynolds number R5 was on the order of
We shall subsequently return to some of this work. 1500 for both. The laboratory data, not plotted here, show a

Measurements were made in the atmospheric surface similar trend and roughly coincide with the atmospheric data.

layer about 6 m above a wheat canopy in the Connecticut Au(r) is obtained by taking the velocity differences separated

Agricultural Research Station. Data were also acquired by a time difference At, and interpreting r - -At U. where U is

about 2 m above the roof of a four-story building. The the mean velocity of the flow at the measurement station

laboratory data Were acquired at a height of 0.25, where (Taylor's frozen flow hypothesis). The integral scale A was
determined by obtaining the area under the autocorrelation

5 is the thickness of the boundary layer, over a smooth function of u, and converting it to a length scale by Taylor's hy-
flat plate. The boundary-layer-thickness Reynolds num- pothesis. Inset: The stretched exponential is a good approxima-
her at the measuring station was 32000. Velocity fluc- tion to typical experimental data for both sides of the distribu-
tuations were measured using the standard hot-wire (0 tion. In this figure and others in this paper, au is normalized by
pm diam, 0.6 mm length) velocimeter operated in the its root-men-square value.
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there is an extensive region of the PDF to which a temperature increments in a Rayleigh-B1nard convection
stretched-exponential fit is good. It follows from Eq. (I) experiment has been made in Ref. [I I].
that there must be a certain asymmetry between the two In a recent paper [91, Benzi et al. derived an expression
tails of the distribution, but this asymmetry is not very for the PDF of velocity increments. They assumed that
large. In fact, Fig. I shows that the differences between Au(r), for r in the inertial range, is given by the random
the two tails of the distribution, insofar as they relate to /3 model [ 121,
the stretched-exponential fits, are small. We shall there-
fore momentarily ignore this asymmetry and return to it Au(r) -Auo(r/L) 1 /3 fl-i• 1/3 (2)
later. The empirically determined stretching exponents -
are plotted in Fig. I as a function of r for two sets of at- where Auo is the characteristic velocity increment on the
mospheric data. Whilc square-root-exponential fits are macroscopic length Lo, and the i6's are identically distri-
good for r in the dissipation range, Gaussian fits are ap- buted independent random variables. Benzi et al. [91
propriate for r-Lo-IOA, where A is the autocorrelation used a special case in which the probability density of/$
length scale of u (see caption to Fig. I). This latter result was assumed to be given by
is not surprising because velocities at two widely separat-
ed points become independent of each other. The ex- pp()-(a60( -0)+(I -a)5(B- P), (3)
ponent m increases monotonically through the inertial
range. Laboratory data, not displayed here, show a simi- with a - F and B - j, in conformity with experiments
lar behavior. 12,31. Under the further assumption that Auo is normally

It should be noted that a somewhat similar effort for distributed (see Fig. I), Benzi et al. 191 showed that the
PDF of Au is given by

p&.(Au(r)) CQa"-&(4 -- a)kBk exp + I -- [aa+(I -a)BlJ16(Au) (4a)k -o (xorl),n exp 2o,

ak;.1, " .I (,b)

Here, n is the number of steps assumed to occur in a cas-
cade before reaching a scale r and is given, for a binary
cascade, by n -log2(Lo/r). Notice that the second term Au(r)-V(Aui) / 21"Irm,11 . (7)
on the right-hand side of Eq. (4a) accounts for inactive
eddies, i.e., spatial regions where the dissipation of energy Recalling again from Fig. I that p",(Auo) is Gaussian

is zero. Away from Au -0, the first term on the right- (with mean 0 and variance (Au) "'2), we obtain from Eq.

hand side of Eq. (4a) is the only contribution to the total (7), with n-0, that the universal stochastic 'ariable v

PDF. has a normal distribution with zero mean and unit;' 'ari-

An alternative expression can be obtained for ance. In stating this result, we are stretching the validity

p&.(Au(r)) as follows. Following Kolmogorov (131 we of Eq. (5) all the way to the integral scales of motion.

assume that for r in the inertial range of scales Now, Meneveau and Sreenivasan 1161 have shown that
the following simple model (the so-called p model) for

Au(r)--,(rs,),(5) the probability density of m is adequate for most pur-

where v is a "universal" stochastic variable, and rc, is the poses:

total energy dissipation in the linear piece of size r. It is p,(m)-0.516(m-M)+8(m-- (I -M))] (8)

clear that within this framework [141 any reasonable
model for r,, and r will also yield a reasonable model for get from Eq. (7) that
the PDF of Au(r). A convenient model 1151 for the ener-
gy dissipation is one in which the average energy flux "r A
summed over any box of size r/L 0o-22 can be written p',^pu(r)) "-oIC2 - 1 I exp- -2.
as

(9a)

r. - Loo6 mi, (6) -- /(AuJ) /2Mk/ 3(l -M)(M-&)/) (9b)

where the multipliers mi are identically distributed in- Figure 2 shows comparisons between the experimental
dependent random variables. Here t 0L0 is the typical en- data for two values of r (W/A -0.009 in the inertial range
ergy dissipation contained in an eddy at the macroscopic and r/A -0.9) and the theoretical results of Eqs. (4) and
scale (or, equivalently, the total energy flux across (9). The appropriate values of n to be used in Eqs. (4)
scales). Noting that (AuJ)-(Lo&oD)2', we write and (9) are determined by the relation n -og 2(Lo/r).
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FIG. 2. A comparison between the experimental data for FIG. 4. The stretching exponent m determined empirically
p&a(Au) for two values of r, and Eq. (9) based on the p model for Eqs. (4) and (9). compared with the experimentally deter-
(dashed line) and Eq. (4) based on the random pi model (dotted mined data of Fig. I (dashed line, p model; dotted line, P mod-
line). The formula based on the random P model tends to un- el). The parameter n is determined arbitrarily by matching the
derestimate the PDF of Au close to 0. experiment with the theoretical formulas for some r/A. Inset:

An example in which Eq. (4) for n-10 (corresponding to
r/A-0.009) is well fitted by a stretched exponential with

Both expressions fit the data reasonably well, but the stretching exponent m -0.9.
theoretical curve for the random P model falls below the

experimental data in the region near Au -0. This is so
because in this model the active zones (AudO) tend to which lies between 0 and N, is randomly picked for the p
become more sparse as n increases, model from a binomial distribution. Equation (12) and

Equation (9) expresses the probability of finding a ve- the knowledge of the PDFs of v and k will allow us to
locity increment Au at a fixed scale r. The probability of compute the probability that the dissipation scale is rD.
finding a "gradient" s -Aulr at the scale r can be writ- Let P,,(r) be the probability that the dissipation scale is
ten, by a change of variables from Au to s, as r. The probability density for the gradient can now be

P(31r)'rp"(rs), (10) written from Eq. (10) as

where PA,, is given by Eq. (9) or Eq. (4). The quotation p,(s)iJfdrP(slr)Po(r), (13)

marks for the gradient above reflect the fact that s is the where we have weighted the conditional expectation

gradient only when r is comparable to the dissipation P(slr) by the probability that the dissipation scale is r.
scale rD defined by This step, while rigorous, would necessitate cumbersome

rDAu(rD)/v- I. (11) computations. We avoid them here by making the sim-
plifying assumption that

Note that the average value (rD) of ro is the Kolmogerov P,(s)-P(slr-ro). (14)
scale q. For the p model, Eq. (II) becomes

i,((Auj)l/Lo/ A)113( -- M)(N-&)I32 -N-- . (12) 2.0

Here, we have used the relation rD/Lo--2-N, and k, o

0
C

0

-.;

0-2

00 , I * I I

6 _ 0.0 -4 -2 a 20 -3 
log,0lr/A)

SFIG. 5. Demonstration that the PDFs of increments u >.
which is the velocity u from which the low-frequency corn-

-5 0 2 q a 10 12 ponents arm renoved, tend to an exponential form for large r.

S This is in contrast to the unfiltered data for which the asymp-

FIG. 3. A comparison between the experiment for the tails of totic form is nearly Gaussian. The high-pass-filter setting is 30

the p,(s) (solid line) and the theoretical formulas based on the Hz for + and 9 Hz for 0. The error bars are comparable to

p model (dashed line) and the random P model (dotted line). the typical ones shown in Fig. I.
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Noting that rD"(v/s)12, Eqs. (10) and (14) allow us to express p,(s) for the p model as

N(s) I e _ II

• k-o M/3( _M)lN(Al/3 ep I- 2(Au~o)M2k/3(0 _M) l

(to within a normalization constant). Note that, in Eq.
(15), N(s)--2 1og2(L6ls1/v) and that the approximate Mechanics (MIT Press, Cambridge, MA. 1971). Vol. 2.
sign in Eqs. (14) and (15) is a reminder about their and references cited therein; also F. N. Frenkiel and P. S.
heuristic nature. Using these same assumptions, Benzi et Klebanoff. Boundary Layer Met. 8. 173 (1975).

al. 191 derived a similar expression for the PDF of the ve- [21 F. Anselmet, Y. Gagne. E. J. Hopfinger. and R. A. An-

locity gradient on the basis of the random /3 model. Fig- tonia, J. Fluid Mech. 140,63 (1984).

ure 3 shows a comparison between experiment and Eq. 131 C. Meneveau and K. R. Sreenivasan, J. Fluid Mech. 224,

(15) and an alternative formula due to Benzi et al. [9]. 423 (1991). K. R. Sreenivasan, Proc. R. Soc. London A
Thep model yields a slightly better fit to the data. 14] P. Tong and W. 1. Goldburg, Phys. Fluids 31. 2841

We now point out that the stretched exponentials ap- (1988); P. Constantin, I. Procaccia. and K. R. Sreeniva-
proximate Eqs. (4) and (9) even though the latter two san, Phys. Rev. Lett. 67. 1739 (1991).
are substantially more complex. This is illustrated in the [51 R. H. Kraichnan, New Perspectives in Turbulence, edited
inset to Fig. 4 where Eq. (9) for n -10 is plotted against by L. Sirovich (Springer-Verlag, Berlin, 1991). pp. 1-54;
(Au) 0° 9. The tails of the PDF are closely approximated H. Chen, S. Chen. and R. H. Kraichnan. Phys. Rev. Lett.

by a stretched exponential, consistent with Figs. I and 2. 63, 2657 (1989). Y. G. Sinai and V. Yakhot, Phys. Rev.

The theoretical expressions have been examined for vari- Lett. 63, 1962 (1989).
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good straight lines can be fitted to the plot of 181 B. Castaing, Y. Gagne, and E. J. Hopfinger. Physica
log1log1P,(0)/pAU(Au)1 vs log(IAul) in the range of (Amsterdam) 46D, 177 (1990).
lAul between the minimum and maximum of ak~n [see (91 R. Benzi, L. Biferale. G. Paladin, A. Vulpiani, and M.
Eqs. (4b) and (Nb)]. The exponents so determined are Vergassola, Phys. Rev. Lett. 67. 2299 (1991).
plotted in Fig. 4 by matching with experimental data at [101 A. V. Openheim and R. W. Schafer. Digital Signal Pro-
one chosen location. The fits are good on the whole. cessing (Prentice Hall, Englewood Cliffs, NJ, 1975).
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